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SUMMARY

A1l possible automodel flows of relativistic gas in the general
theory of relativity, when endowed with point symmetry, offer interest
for various problems of astrophysics and cosmology. In the present paper
formulas are derivedfor the case of gemeral automodel flow, for the ultra-

relativistic gas flow and for the case of dust-like matter in its own gra-
vitational field.

*
* L

All the paramefers of a flowing gas for a given equation of state,
torether with the metric, having in this case the form £1]

ds® = ec2di® — erdr® — r2(d0? +- sin? 0dg?) (1)
where V and A are functions of » and t, are described by the Einstein
equations /M — /26*R = »T;* and by the equations of motion stemming from them:
TEy=0. (2)

The general investigation of the automodel state of the indicated
system of equations is conducted by a method analogous to the finding of
automodel solutions for gas flow in the special theory of relativity (STR)
L2, 31.

From the system (2), we have for the adiabatic flow of gas

d (wu, ;
(i) -+ 6uf = iu"u’ ———-agk,l -1 _ai
ds ot 2 ozt axt’ 3)

® AVTOMODEL'NOYE DYIZHENIYA RELATIVIVISTKOGO GAZA V OBSHCHEY TEORII OTNO-
SITL'NOSTI V SLUCHAYE TOCHECHNOY SIMMETRII
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Here ul is the b-velocity; W and & are respectively the heat
content and the entropy that may be expressed through the pressure P
and the specific volume V

k
k—1

PV +ac?, PVf=o. (4y

w =

It is appropriate to write further the system (3) in a form, resem-
bling the system of equations for the adiabatic flow of gas in the STR *:

{3 1nw _ialnw) 1 (ia_‘ day 1 rdv a 8%y , TO? os
o T E o ) T o) =~ w ar tRa Fege—
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In the system (5), a is the RMS velocity, measured by proper time,
dr =V — godt, 02 = 1 — a2/ c? further, an auxiliary time dr,= e* "2l is introdu-
ced with the view of curtailing the writing. At the same time, one should
remember that the quantities 7o and r are not independent.

The system (5) differs from the equation of motion for a gas in
STR by the presence of two functions A and Vv describing the gravitational
forces acting upon the gas in its proper gravitational field. For their
determination one should make use of the Einstein gravitation equations
which, for a centrally-symmetrical gas flow with metric (1), have the form
brought out in [1]. From the indicated system of equations we may obtain
the correlations

oA a? v | GMN K % (P +-¢e)reta

Fre (1 &) to(Gr +5) =0, g =—EEgee,
a3, 3 -1 , (6}
- i; u}-a 0; 3 .=u a ( "--e.rﬁ I ‘Prel).

Eliminating v from (5) with the aid of (6) and expressing 6 through
P and V, we shall obtain

w

g (@ aa) + ¥ (Pr o+ 5 Poj = 5 (ahe £ o),

vV
OtV (et o) H 5 =F(Fhth), @
. A
ws, + aw, = 1% (P_,n + aP,-), )\,70 —_ ‘w‘:'ga——a )
1 a? k
v=— g (14 F)—hn w= e PV o

[* STR means "special theory of relativity, vs GTR — general theory of
relativity. ]



According to the general rules for finding automodel solutions [1,!

we shall represent the functions searched for in the form
a=1H(s), 1/V=1tmk(z), P = 1tmE(3), 5
eh = ImE(z), eV =imE(z), z=r/t ®

We should pay attention to the fact that the automodel solution of
(8) is constructed with the utilization of independent variables r and ¢t —
time of the central observer. Note that the system (8) is less general than
the analogous equations in relativistic gas dynamics.

The .presence in the equations (7) of multipliers 8° and w compels
us to select the power Oat t in the expression for a § in the expressions
for 1/V and P the powers of t must be chosen coinciding.

Substituting (8) into (7) we may arrive at a system of 5 ordinary
equations for the unknowns & —§. In the process of obtaining the indicated
system of arbitrary powers at t are left (m, = — 2, my =my, = 0). The
general automodel solution containing 5 unknown quantities (a,V, PyA,V ),
will thus conté.in 5 arbitrary constants entering into the general solution
of the system of 5 ordinary equations.

Note that for the determination of gas parameters the first 4 equa-
tions would be sufficient (7). In this case the solution would include 4
arbitrary constants, that is, as many as are included in the automodel solu-
tion of gas flow in the STR [3]. The coincidence of the number of arbitrary
constants is the consequence of the fact that the centrally-symmetrical
motion of matter determines unambiguously the space metric.

It is easy to see that in the general case of automodel solution of
(8), no automodel isentropic flow exists. Indeed, & = PV2 = consé. superimposes
on powers of m, and m_ an additional condition, which contradicts the
values of the same quantities found above.

Let us consider further the ultrarelativistic gas flow. The functions
searched for will now be represented in the form

a=1U(z), 1/V=1mk(z), P=1tmi(s), ©
eh = tmEi(z), e¥ = tmEs(3), =r/t. g

When obtainin~ the system of ordinary equations, the following con~

ditions will bé superimposed on the powers

m,=ms =0, myg=—2. (10)



Therefore, the power of m» at V remains arbitrary, which allows
the fulfillment of isotropicity condition by postulating mp = — 1y / k.
The latter implies that in case of ultrarelativistic gas there exists for the

system (7) an automodel isentropic flow; this is contrary to the general

relativistic case where no such flow exists. : ;
The systems of ordinary equations, obtained from (7) with the aid of

(8) and (9) are not practical for research, as being too cumbersome, It is

thus appropriate to effect the transformations of the system (7) and then 1

make use of the general investigation if the above-indicated automodel solu-

tions.

Let us pass in (7) to the new independent variables } 4 r. At the
same time, from (6) we have

. N
v-np, 0t etrd? ' 11
€ 5 = xri(P -e)° - (1

With the aid of the latter, we shall obtain from (7) the system

1 2 2 2 ‘
s 3 11 ) ][O

or c? t
1
+ g e — 1 wrte)| = (e —1 —ur?P)+—"—§f—ur=(P+e), |
alnV dlnV 2 a1 i
'—[; ret+ =5 @4—4"”"Pﬂ+2w[ B e+ |
+6lna (e*—1 +W'“8)] + 2e* = ——-[e"‘——i + nr2e], (12) |
ﬂ(e“"-— 1 —ur®P) + ——re-l =0, j
ov
¥ "‘-{-ah [ (P+¢e)te? -—1—xr2P] \
2 xr 2P+ -2 — 14 —wur2P), |
~ Let us consider further the isentropic flow of an ultrarelativistie
gas, when
P = (k—1)e, P=c¢V-* 0= const, ce(k—1) = oV~ (13)

As was noted above, A, a, v- are functions of gz; hence, in order to
obtain the automodel solution of (12), we should postulate

a=a(A), v=v(h), P=r24:(). (14)



Substituting (13) and (14) into (12), we shall obtain

1

deA@4—i—%m%—
dA %A
B
2 A"l dA -
e
{1 dina® A (e r—1 ”Al 15
+ o5 g dk( —1+ 2= )+2e‘ 2< + £ ). (15)
dv a? kA1

d;.( A= 1+e-’--——1—-xA1> g * e (e —1—xdy).

To conclude, let us consider the automodel motion of dust-~like
matter in its proper gravitational field. A problem of that sort has in its
prover calculation system an exact solution [1]; however, it is interesting
to obtain the same solution in the reading system of the central observer,
who, besides matter density distribution observes also the distribution of
velocities.

Postulating in (12) P = 0 and taking into account that a=a(A),
we shall obtain from the first equation of the indicated systen

a2/c?=1 —e* : (16)
(the integration constants was so chosem that at infinity at A - 0, a = 0).
When we also take into account (16) and the correlations following

from (8),

1/V =1¢t2B(z) = riF(A);

we shall have from the second equation of the system (12)

o =1/V=1/rle,—xc*F(3)], (17)
1= G Pl =% (18)

It follows from (18) and (17) that at r—oo (e*—1) p—0. Utilizing
(16) and (17), we determine from the last equation of the system (12) v(})
after which from (11) we find t (A, r).

Note in conclusion that certain guestions of automodel flows of gas
in the GTR have been examined in the V., A, Skripkin dissertation [6] in con-

nection with the investigation of shock waves.

*Ex* THE END LE R R J
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